# Anti-inflammatory clearance of amyloid beta by a chimeric Gas6 fusion protein



Hyuncheol Jung<sup>1,§</sup>, Se Young Lee<sup>1,§</sup>, Sungjoon Lim<sup>1</sup>, Hyeong Ryeol Choi<sup>1</sup>, Yesung Choi<sup>1</sup>, Minjin Kim<sup>1</sup>, Segi Kim<sup>1</sup>, Yujean Lee<sup>1</sup>, Kyung Ho Han<sup>1</sup>, Won-Suk Chung<sup>1,\*</sup>, Chan Hyuk Kim<sup>1,\*</sup>

<sup>1</sup>Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

# Abstract

Aβ immunotherapy is one of the most promising approach for Alzheimer's disease treatment. Although several Aβ-antibodies can substantially reduce Aβ burden in the brain, their effects on cognitive function remain marginal. Moreover, patients with Aβ-antibody treatment often experience brain edema and microhemorrhage closely associated with immune reactions and inflammation. Here, we develop a chimeric phagocytosis inducer ( $\alpha A\beta$ -Gas6) for A $\beta$  consisting of a single-chain variable fragment of Aducanumab fused with Gas6, a bridging molecule for clearing dead cells. This αAβ-Gas6 selectively eliminates Aβ plaques mainly through TAM receptor-dependent phagocytosis without NF-kB-mediated inflammatory responses and reactive gliosis. Furthermore, αAβ-Gas6 successfully engaged both microglia and astrocytes to clear Aß plaques and substantially reduced excessive synapse elimination by microglia in the AD hippocampus to the level of non-AD controls.



Figure.4 Increased astrocyte-mediated Aβ uptake by αAβ-Gas6 Figure.3 Anti-inflammatory effects of αAβ-Gas6: THP-1<sup>Ax/</sup> Next, to directly compare the effects of  $\alpha A\beta$ -Gas6 with Aducanumab, we generated THP-1<sup>Ax/</sup> cells that express both We found that both αAβ-Gas6 and Aducanumab significantly induced phagocytosis of oAβ-pHrodo in primary microglia, albeit with lower levels with αAβ-Gas6, most likely due to different expression levels of AXL and Fc-gamma receptors. Importantly, only Aducanumab treated THP-1<sup>Axl</sup> cells secreted significant amounts of TAM versus Fc-gamma receptors in cultured microglia. Importantly, in sharp contrast to microglia, only pro-inflammatory cytokines, such as TNF, IL-6, and IL-1 $\beta$ . Consistent with this data, Aducanumab, but not  $\alpha A\beta$ -Gas6,  $\alpha$ A $\beta$ -Gas6, but not Aducanumab, was able to significantly increase astrocyte-mediated oA $\beta$  phagocytosis. showed strong NF-kB reporter expression in THP- $1^{AxI}$ .

# Results



### Figure.1 Generation of chimeric Gas6 fusion proteins

Binding of Gas6 to LG1/LG2 domains of TAM receptors induces receptor dimerization and activation, which in turn initiates downstream cascades including phagocytosis and anti-inflammatory responses. To redirect the target-specificity of Gas6 to A $\beta$ , we replaced the Gla domain in the human Gas6 sequence with the single-chain fragment variable (scFv) of Aducanumab.



### Figure 2 $\alpha$ A $\beta$ -Gas6-mediated A $\beta$ uptake by human microglial cells: HMC3

Live-cell imaging analysis showed that only  $\alpha A\beta$ -Gas6 treated cells have significantly increased red fluorescence compared to Gas6 and αFITC-Gas6 treated cells. This data indicates that unlike native Gas6 which cannot bind to A $\beta$  by itself,  $\alpha$ A $\beta$ -Gas6 directly induces engulfment and phagocytic degradation of  $oA\beta$  in the acidic lysosomal compartment.





### Figure.5 In vivo analysis of $\alpha A\beta$ -Gas6 using 5XFAD: Gene Therapy

Tnf and II1b were significantly upregulated in DAM cluster of the LV-Aducanumab group, but were We examined whether and to what extent microglia and astrocytes were involved in plaque clearance. We bilaterally injected LV-Aducanumab and LV-αAβ-Gas6 into the hippocampal CA1 regions of 8 month-old 5xFAD mice. When we suppressed in the LV- $\alpha$ A $\beta$ -Gas6 group to levels even lower than the LV-control injected group. examined LV-injected 5xFAD mouse brains 4 weeks after injection, we found that different LV-injected groups had a similar Concomitant with reduced expression of pro-inflammatory genes, microglia from LV- $\alpha$ A $\beta$ -Gas $\beta$ injected group upregulated different gene sets related to interferon-alpha responses and MHC class II number of ZsGreen-expressing cells in the CA1. Importantly, when we analysed Aβ plaques in the CA1 by Congo Red related genes (Cd74, H2-Aa, H2-D1, H2-k1, H2-Eb1, etc.). Furthermore, interestingly, some of DAM staining, we found that both the number and total area of Aβ plaques were significantly decreased in the 5xFAD CA1 injected markers (*Spp1, Itgax, Lgals1*) were also distinctly upregulated in the LV- $\alpha$ A $\beta$ -Gas6 injected group. with LV- $\alpha A\beta$ -Gas6.

As reactive microglia are highly associated with excessive synapse elimination, we investigated the extent of NPAM (Non plaque-associated microglia)-mediated synapse elimination in LV-injected WT and 5xFAD brains. Strikingly, we found that LV-αAβ-Gas6 injection significantly reduced excessive synapse elimination by microglia to levels comparable to the non-AD WT brain group.

### Figure.7 In vivo scRNA-seq reveals anti-inflammatory phagocytic effects of LV-αAβ-Gas6

Similar to microglia, we found that astrocytes from the LV-Aducanumab injected group significantly upregulated several reactive astrocyte genes (Gfap, C4b, and Cd14) as well as proinflammatory chemokines and cytokines compared to the LV- $\alpha$ A $\beta$ -Gas6 injected group.

## Conclusion

- We developed a novel chimeric fusion protein,  $\alpha A\beta$ -Gas6, by engineering Gas6 protein, a bridging molecule for the clearance of dead cells via TAM (Tyro3, Axl, and MerTK) receptors.
- αAβ-Gas6 selectively eliminates Aβ plaques mainly through TAM receptor-dependent phagocytosis without inducing NF-kB-mediated inflammatory responses.
- αAβ-Gas6 can induce synergistic clearance of Aβ by activating both microglial and astrocytic phagocytosis.
- αAβ-Gas6 prevents excessive synapse elimination.
- Our results suggest that  $\alpha A\beta$ -Gas6 can be a novel immunotherapeutic agent for AD beyond conventional antibody therapy.

# Acknowledgements

We thank all members of the Chung and Kim laboratory for helpful discussions. Hyuncheol and Se Young contributed equally to this work. Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) and Korea Dementia Research Center (KDRC), funded by the Ministry of Health & Welfare (MOHW) and MSIT, Republic of Korea (HU20C0290, W.-S.C.). All financial support for travel and lodging expenses by Illimis Therapeutics.

